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Abstract—It has often been found that students appreciate
hands-on work, and find that they learn more with courses
that include a project than those relying solely on conventional
lectures and tests. This type of project driven learning is a key
component of “Inquiry-based learning” (IBL), which aims at
teaching methodology as well as content by incorporating the stu-
dent as an actor rather than a spectator. Robotics applications are
especially well-suited for IBL due to the value of trial and error
experience, the multiple possibilities for students to implement
their own ideas, and the importance of programming, problem-
solving and electro-mechanical skills in real world engineering
and science jobs. Furthermore, robotics platforms can be useful
teaching media and learning tools for a variety of topics. Here,
we present RoboGen: an open-source, web-based, software and
hardware platform for Robotics and Artificial Intelligence with
a particular focus on Evolutionary Robotics. We describe the
platform in detail, compare it to existing alternatives, and present
results of its use as a platform for Inquiry-based learning within
a master’s level course at the Ecole Polytechnique Fédérale de
Lausanne (EPFL).

Index Terms—Robotics, Education, Inquiry-Based Learning,
Artificial Intelligence, Evolutionary Robotics, 3D-Printing

I. INTRODUCTION

SCIENCE instructors across a diversity of disciplines agree
on the pedagogical value of hands-on exercises [16].

However, several authors [22], [32] have drawn attention to
certain shortcomings of typical laboratory exercises. Specifi-
cally, these authors stress that hands-on components of courses
tend to be formulaic, too narrowly focused, and at times
outdated.

On the other hand, it has often been found that students
appreciate hands-on work, and find that they learn more with
courses that include a project than those relying solely on
conventional lectures and tests [7]. This type of project driven
learning is a key component of “Inquiry-based learning” (IBL),
a pedagogical approach developed in the 1960s in the logic of
constructivism, which aims at teaching methodology as well
as content by incorporating the student as an actor rather
than a spectator. In IBL the work is problem or research-
based and emphasizes resolution methodology over theoretical
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content [20]. This allows teaching skills that are important
for a researcher and increases student involvement in the
project [23]. With such an approach it has been found that
students are more enthusiastic, creative, have a strong team
spirit [40], and are willing to work longer hours [25], [40].
Moreover, when IBL is applied to scientific research topics, it
has been shown to improve students’ skills in report writing
and technical English [50]. Accordingly, this approach is now
widespread in universities and high schools.

Robotics projects are especially well-suited for IBL due
to the numerous possibilities for students to implement their
own ideas, as well as the importance problem-solving and
electro-mechanical skills in real world engineering and science
jobs [25]. Furthermore, robotics platforms can be useful teach-
ing media and learning tools for a variety of topics [41]. They
can be used to teach programming, allowing the users to see
their code working in a visual way, and even be used for grasp-
ing social behaviors and emotion [15]. However, existing ed-
ucational robotics platforms frequently rely on pre-fabricated
robots and/or emphasize instruction-based programming of the
robot behavior. Therefore, they are not ideal tools for teaching
advanced robotics and Artificial Intelligence methods, such as
neural networks, and morphological evolution.

Here, we present RoboGen, an open-source, web-based,
software and hardware platform for robotics, specifically in the
context of its use for Inquiry-based learning within a master’s
level course at the Ecole Polytechnique Fédérale de Lausanne
(EPFL). While capable of supporting more traditional robotics
functionality, RoboGen has primarily been designed as a plat-
form for Bio-Inspired Artificial Intelligence techniques [13]
including Evolutionary Robotics (ER) [19], [37].

ER provides a framework for overcoming the biases and
limitations of human engineers in designing robots by lever-
aging the use of Evolutionary Algorithms (EAs): a class of
heuristic search/optimization algorithms loosely inspired by
natural evolution. Most typically in Evolutionary Robotics an
EA is applied to optimize the control policy of an existing (of-
ten simulated) robot for a pre-defined task. However, EAs may
also be used to optimize a robot’s physical form including its
mechanical design as well as its use of sensors and actuators.
The idea of using EAs to optimize the physical form of a robot
(i.e. its morphology) in addition to its controller dates back at
least to Karl Sims’ pioneering study on the evolution of virtual
creatures in 1994 [44]. This work has been followed by many
additional studies [3], [8], [12], [17], [28], [30], [38] in which
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Fig. 1. A graphical overview of evolving robots with RoboGen. Abstract robot representations (here depicted as a strand of DNA) define the brains and bodies
of robots, which are evaluated in the physics-based simulation engine. After many iterations of selection and reproduction based on the robots’ simulated
performance, the best robot is fabricated via the use of 3D-printing, an Arduino based microcontrol board, and other off-the-shelf electronic components.

aspects of simulated and/or physical robots’ morphologies
have been evolved. This approach has the major advantage
of discovering body plans and sensorimotor configurations
uniquely suited for the machine’s task environment.

The majority of these studies have been confined to sim-
ulation [3], [8], [28], [44], oftentimes not even professing to
evolve robots per se, but rather “virtual creatures” [28], [44],
where assumptions of physical realism have been relaxed.
Others have tried to faithfully model real physics in their
simulations, and some, starting with [30], have evolved robot
morphologies and controllers in simulation and then manufac-
tured these via 3D-Printing.

It is this last approach that has most directly inspired
RoboGen. While in the year 2000, 3D-printers were expensive,
niche products, and physical simulation was slow, a plethora
of inexpensive printers now exists1, and many people have
access to fast computers with multiple computing cores, which
are especially useful for EAs—often called “embarrassingly
parallelizable” [46]. These reasons, as well as the widespread
availability of low-cost, off-the-shelf electronics components,
standardized microcontroller programming environments, such
as Arduino2, as well as the adoption of the web browser as a
cross platform application container3 have all led to the ability
to make such a system widely available.

Due to the comprehensive nature of the platform, and the
many disciplines it draws upon, RoboGen offers a unique
experimental test-bed for users to explore a variety of topics
including computer programming, evolutionary algorithms,
artificial neural networks, physical simulation, 3D printing,
electro-mechanical assembly, and embedded processing. In
addition, it is a fully open-source platform, relying only on
free software and low-cost, off-the-shelf components.

The rest of this paper is structured as follows: Section II
presents an overview of related work on robotics platforms,
specifically for educational uses. In Section III the RoboGen
platform is described in greater detail—including the specific
ways it is used within a master’s level course. Section IV

1See for example http://3dforged.com/good-cheap-3d-printers/
2http://arduino.cc
3And the maturation of tools such as Emscripten (https://github.com/

kripken/emscripten) for compiling native code to run efficiently within web
browsers.

then presents the results of using RoboGen for class projects
at EPFL in the Spring of 2016: examples of what students
were able to accomplish with the platform, as well as their
feedback about the project solicited through a questionnaire.
This is followed by a discussion of the efficacy of RoboGen
in this context, before closing with conclusions and directions
for future work.

II. RELATED WORK

While RoboGen offers many novel features, it is certainly
not the first robotics platform to be used for education, nor
is it the first platform for Bio-Inspired AI or Evolutionary
Robotics. In this section, the most relevant robotics platforms
for education are described, and differences between those
platforms and RoboGen are discussed. Unfortunately describ-
ing all such platforms is beyond the scope of this paper,
and thus focus is paid to those most relevant to the goals of
RoboGen: being full-featured, open-source, low cost, capable
of simulating and fabricating a diversity of morphologies, and
being an appropriate platform for teaching electro-mechanical
skills and Bio-Inspired AI techniques to a diversity of students.

A useful (if slightly outdated) resource for additional pos-
sibilities is provided by Ruzzenente et al.’s [43] review of
robotics platforms for tertiary education. A more recent review
of modular robotics kits for classroom education is provided
by Takács et al. [48].

The e-puck4 [34] is a two-wheel, differential drive mobile
robot, which includes a set of sensors, LEDs, microphones,
and a loudspeaker. There also exist several add-on modules,
which can be attached to the e-puck to extend its capabilities.
The e-puck and its extensions are tools for teaching mobile
robotics, real-time programming, and embedded systems. Due
to the simple two-wheel, differential drive control of the e-
puck, and its similarity to the older Khepera robot [36], which
formed the basis of many pioneering studies in ER [14],
[24], [33], the e-puck is also used to teach the fundamental
techniques of ER such as neural networks and fitness function
design. Additionally, it has successfully been used to study dis-
tributed systems, control theory, signal processing, behavior-
based robotics, and swarm robotics [9], [35].

4http://www.e-puck.org/
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While the e-puck is a well established robotics platform for
both education and research, and it is still utilized in Evolu-
tionary Robotics studies [21], it is severely limited by its mor-
phology. The two-wheeled, differential drive design is effective
for robotics tasks consisting of movement over flat terrains,
but it does not support more biologically inspired modes of
locomotion, which are useful in complex environments (e.g.
moving over rough or uneven terrains). Moreover, while the
morphology of an e-puck may be altered to some extent with
different extensions, it has not been designed to allow for a
diversity of body plans, and is therefore more appropriate for
studying the behavior of an individual or a swarm, as opposed
to advanced concept such as morphological computation [39].
Additionally, while accessible to well-funded universities, the
e-puck is too expensive for many educational applications.

A lower cost differential drive mobile robot, Thymio5 [41],
may be a better option for those on a tight budget. It features
tactile buttons, a diverse set of sensors, a loudspeaker, a hook
for a trailer, and a pencil holder. In addition, the wheels can
be used for other purposes (e.g. cable actuation), and several
parts of the robot feature protruding knobs to which LEGO
parts can be attached.

Thymio aims at teaching the logic of robotic programming
to a wide public, including young children [26], [42]. For
this purpose, several modalities are available for program-
ming: visual programming, which relies only on graphical
representations of desired functions, ‘Blockly’ programming—
a hybrid between visual and textual programming, developed
by Google, and finally, Aseba Studio—a text based IDE using
a simple language that also allows a higher level of control.
Thymio has been designed to make the hardware as easy to
use as possible, and thus the features are modular and are
provided as self-contained elements. This is great for introduc-
ing students to robotics, but less appropriate for higher-level
engineering students, who need a deeper understanding of the
electronics and mechanics.

Thymio’s low cost, multiple programming options, and
ability to attach LEGO components make it more suitable than
the e-puck for teaching many bio-inspired robotics concepts.
However, it is still not capable of producing the diversity
of morphologies that RoboGen can produce, nor has it been
designed to have a tightly integrated simulator and a diversity
of bio-inspired algorithms as RoboGen has.

Using the versatility of LEGO parts, the Mindstorms6

platform is based on a programmable brick that includes the
microcontroller, inputs for sensors, outputs for motors, and
a built-in speaker. The sensors and actuators come as blocks
that can be placed on the body of the robot. The robots can be
programmed with a computer via a diversity of programming
interfaces (both graphical and textual), or controlled directly
with a smartphone app and a bluetooth connection.

The Mindstorms kit offers many more morphological and
control possibilities than the other platforms mentioned above.
Additionally, simulation engines have been created for it7.

5https://www.thymio.org/
6http://www.lego.com/mindstorms/
7E.g. Virtual Brick: http://robotvirtualworlds.com/virtualbrick/

Moreover, the platform is relatively affordable and the parts
may be purchased separately to expand its capabilities. How-
ever, the existing simulation engines are not open source, nor
freely available in the web browser, and while many parts
are available, they are pre-defined. Finally, while Evolutionary
Algorithms have been applied to evolving LEGO robots [31],
no support for such AI techniques is included in the the
Mindstorms kit, and manually designing control strategies for
complex robots is an onerous task.

Another relevant option is the LittleBits platform8, which
consists of a series of modules, called bits, that can be
assembled together with magnets. Each bit is an electronic
component with a specific function: sensing, actuation, lights,
speakers, power, and logic gates. The platform has been
designed such that most of the mechanical structure should be
created with paper, cardboard or other household items, while
a mounting board is provided to hold the electronics. This
“crafty” side is quite interesting for stimulating the creativity
of young children.

In its original form, the platform is not programmable,
relying instead on switches, sliders, knobs etc., connected to
the parts that need to be controlled. This is akin to electronic
circuit design kits, and avoids the abstraction level needed to
understand code, thus making it easier for beginners. For more
advanced users, a new bit includes an Arduino microcontroller,
and can be programmed in a traditional way. While the plat-
form shares some of the goals of RoboGen: being affordable
and appropriate for students of diverse ages, it has primarily
been tailored for younger students. Additionally, LittleBits
includes neither simulation software, nor the extensive bio-
inspired components that RoboGen does.

Most of the aforementioned robotics platforms provide the
means for users to take either an existing robot (e.g. the
Thymio), or one that they have manually designed (with
e.g. LEGO Mindstorms) and program controllers using either
a graphical programming language such as LabVIEW [49],
or a more traditional, textual programming language. While,
manually designing and programming robots in a similar way
is possible with RoboGen, its novelty really stems from its
ability to forgo such manual design and instead leverage Bio-
Inspired AI techniques such as Evolutionary Robotics for the
automatic design of robot morphologies and/or controllers.

While other projects have attempted to make ER easily
accessible to students, these have been limited in scope and
do not allow one to go from conception of a task, to evolving
bodies and brains all the way to 3D-printing and building a
physical version of the evolved robot. For instance, Ludobots9

is a freely available, Evolutionary Robotics MOOC (massive
open online course) created by Josh Bongard and colleagues,
which is hosted on http://www.reddit.com. Like RoboGen, it
is designed for students of a wide range of experience level.
Ludobots guides students through a set of increasingly chal-
lenging exercises, starting with a simple web-based, “connect-
the-dots”-bot application, through a series of programming
exercises to the final assignment which yields a C++ based

8http://littlebits.cc/
9https://www.reddit.com/r/ludobots/
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Fig. 2. Overview of the RoboGen software platform. The evolution engine (left) runs an evolutionary algorithm operating on a population of abstract
representations of robot brains and bodies (depicted here as strands of DNA). Each of these robot representations is sent to the simulation engine (right),
which first translates each abstract representation into a concrete, physically simulated robot with properties tuned to those of the real hardware, then simulates
this robot being controlled by a neural network inside of a highly customizable virtual environment, and finally returns a measure of the robot’s performance,
known as a fitness function. The evolution engine in turn uses these fitness values to select good robots for reproduction.

ER platform. The course is designed to allow users to fork
and modify all aspects, which makes it quite open-ended, but
in the end, a lot of programming is required to explore more
advanced topics. Most importantly, unlike RoboGen, there is
no provided mechanism for transferring robots to reality.

In summary, while a number of robotics platforms have
previously been created for educational purposes, none offer
RoboGen’s unique combination of open source software and
hardware, which allows students to design and evolve robot
bodies and brains in simulation, and then fabricate these bio-
inspired, articulated robots at low cost.

III. METHODS AND MATERIALS

In this section, the RoboGen platform is presented in greater
detail, followed by a description of how it has been used as
a platform for master’s level course projects at EPFL. Section
IV then presents results of using RoboGen in this context.

As previously mentioned, RoboGen is an open source
hardware and software platform. The software platform is
comprised of an evolution and a simulation engine, as depicted
in Fig. 2. Once one or more robots have been successfully
evolved or designed, it/they can be physically fabricated by
3D printing the open source design files and assembling the
robot(s) with low cost, off-the-shelf electronics components
(Fig. 1). Since the capabilities of the software platform have
been engineered to support the ultimate creation of physical
robots, it makes the most sense to first describe these robots—
the components they are comprised of and how these compo-
nents are assembled together—after which further details of
the software platform will be presented.

A. RoboGen Robots
1) Robot Bodies: RoboGen robots are made up of prede-

fined and parameterized body parts, each of which is com-
posed of one or more 3D-printed structural elements in possi-
ble combination with off-the-shelf electronic components: sen-
sors, actuators, and an Arduino-based microcontroller. In order

to support a large diversity of morphological possibilities,
these parts can be assembled together into a variety of con-
figurations. The body parts are assembled together by means
of plates (male) that slide into connection slots (female) (refer
to Fig. 3). Additionally, the system includes body parts with
modifiable parameters (e.g. dimensions and angles), which
allow for leveraging the customization capabilities offered by
3D printing beyond what would be possible with an off-the-
shelf kit of building blocks such as LEGO.

RoboGen robots are articulated modular structures, which
can be represented as a tree (Fig. 4), where nodes represent
body parts and links represent connections between parts. All
RoboGen robots begin with the CoreComponent, which serves
as the root of the tree, and houses the microntroller and battery
capable of delivering the required 5V 10. This part is designed
such that the microcontroller board and battery fit snugly and
remain in place as the robot moves. It also includes a slot
for the USB port of the microcontroller, which is used to
upload the control code—including an evolved artificial neural
network. Additionally, the microconctroller provides sensory
information from an onboard 6-axis inertial measurement unit
(IMU), which provides proprioceptive feedback.

The microcontroller and all other electronic elements of
RoboGen have been chosen to be low-cost and readily avail-
able for online purchase so that the robots can be manufactured
by anyone in the world. The reference information for all
components can be found on http://robogen.org/.

The other body parts fall into four categories: bricks,
joints, sensors, and connectors as shown in Fig. 3. The
bricks include the CoreComponent and FixedBricks: while the
CoreComponent houses the microcontroller and battery, the
FixedBricks are empty, but otherwise these parts are identical.

10In practice the battery pack we use (Turnigy nano-tech 260mah 2S 35 70C
Lipo Pack (http://www.hobbyking.com/hobbyking/store/ 26742 Turnigy
nano tech 260mah 2S 35 70C Lipo Pack.html) is used in conjuction with
a voltage regulator to convert from 7.6V to the 5V that the microcontroller
requires.
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Fig. 3. CAD renderings of the main RoboGen parts.

Each FixedBrick measures 41x41mm horizontally, is 35mm

high, and has (female) connection slots on its four sides11.
There are currently three different types of joints: Para-

metricJoints, ActiveHinges, and PassiveHinges12. Paramet-
ricJoints are rigid connections with a variable length and
angle that allow the robot’s basic shape to not be confined by
a Cartesian grid. PassiveHinges include a passive joint with
one degree of freedom composed of a brass axle for minimal
friction. ActiveHinges include an active joint with one degree
of freedom actuated by a servomotor. All joints contain two
(male) connections plates at opposite ends.

There are two types of sensor body parts: LightSensors and
IrSensors, which can provide the robot with additional sensory
feedback. The former are analog photoresisteros, which output
a signal proportional to the perceived light intensity. They are
directional to enable light following behavior and calibrated to
discount for ambient light. The latter are infrared time-of-flight
sensors. They use I2C communication and are not susceptible
to ambient light. Both of these sensors connect via a single
(male) plate, and so will always be leaf-nodes of the body
tree.

Since bricks have female attachment slots and all other
components have male attachment plates, it is also necessary to
have connector parts. A ConnectorBrick slides into a slot on
either side and connects two bricks flush against one another,
while a ConnectorPlate slides over two plates and holds them
together with a small gap. However, the RoboGen software
will automatically determine when these parts are necessary,
and so they are not part of the body tree defining a body (q.v.
Fig. 4), and thus for all intents and purposes can be ignored
until a robot is physically fabricated.

2) Robot Brains: In RoboGen, the brains of robots are
Artificial Neural Networks (ANNs). The body of a robot
implicitly defines the inputs and outputs of its ANN controller.
Specifically, each sensor on the robot serves as an input
to the ANN and each motor requires an output neuron.
Additionally, a robot’s brain may possess a number of internal
or hidden units not directly connected to any inputs or outputs.
Moreover, the ANNs may include recurrent connections from
any hidden or output neuron to any hidden or output neuron
(including self feedback connections). Each neuron computes
its output by first computing a weighted sum of its inputs and
then applying a sigmoid activation function as is standard in
ANNs. However, in RoboGen, it is also possible for hidden
or output neurons to be oscillator neurons, as these have
been shown to drastically speed up the evolution of effective
controllers for locomotion [4]. Specifically, these oscillator
neurons do not receive any input, but rather output a sinusoid
oscillation as a function of time. Each oscillator neuron is

11In the original design of RoboGen, each brick also had connection slots
on its top and bottom. While this did allow for an even greater diversity
of morphologies, it was decided to limit the connections to only be within
the x− y plane in order to prevent robots from having to fight gravity while
evolving behaviors, while also providing easy access to all electronics. Robots
in the system presented here can still stand up and move in three dimensions,
but their initial configurations are necessarily planar.

12RoboGen also supports a larger set of body parts including wheels and
whegs (both with paremeterized diameters) as well as rotational joints, but
these are generally disabled for student projects in order to encourage the
evolution of more biologically-inspired robots, and will not be discussed
further here.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TLT.2018.2833111

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES 6

Fig. 4. An example of a robot body tree (left), and the simulated robot that this tree represents (right). Each node represents a body part and maintains (a)
pointers to its children (other parts that attach to it) depicted by the labeled edges (labels depict which slot the child is attached to, empty slots omitted for
clarity), (b) the type of part, (c) an orientation relative to its parent (given by an integer value representing increments of 90◦), and (d) evolvable parameters
(if applicable).

Fig. 5. An example of an artificial neural network ‘brain’ for a robot with
three sensors, one hidden neuron, and two motors. Note: the sensor inputs
from the IMU are omitted for clarity.

defined by its period, its amplitude, and its phase-offset from
a central clock. An example RoboGen brain is depicted in
Fig. 5.

In the RoboGen software, each body part maintains a list of
neurons that it contains (hidden neurons are by default part of
the CoreComponent). Each neuron representation in this list
stores the layer (input, output, or hidden) of the neuron, the
type (sigmoid or oscillator) of the neuron, and its parameters
(bias for sigmoid neurons; period, amplitude, and phase-offset
for oscillator neurons).

The connections and weights for the neural network are
maintained in a single map: weights for the whole robot that
maps ordered-pairs of neurons to floating point values. If an
entry weights[(i, j)] exists then the connection from neuron i
to neuron j exists with weight weights[(i, j)]. If no such entry
exists, then there is no connection from i to j in the neural
network. For the purpose of applying evolutionary variation
operators (see below), this representation is converted into a
single vector containing all weights and parameters.

B. Software Suite

The software suite (Fig. 2) is comprised of two main com-
ponents: an evolution engine and a physics-based simulation
engine. In short, the evolution engine runs an evolutionary
algorithm by starting with a randomly initialized population
of abstract robot representations, sending each representation
to the the simulation engine, which first translates each abstract
representation into a concrete, physically simulated robot, sim-
ulates this robot in a virtual environment, and finally reports
back a performance measure or fitness for the given robot. The
evolution engine then eliminates the poor performing robot
representations and reproduces the well performing ones (with
variations). The newly created robot representations are next
sent to be evaluated in the simulation engine and the process
repeats until a stopping condition is reached (usually a fixed
number of iterations).

1) Evolution Engine: The evolution engine contains all of
the components needed to run such an evolutionary algorithm
on a population of robots: representation, variation, and se-
lection mechanisms. The evolutionary algorithm is capable of
operating in two modes: brain-only mode, which only evolves
the controller or ‘brain’ of an existing robot morphology,
and full mode, which evolves both the brain and ‘body’
(morphology) of robots. In brain-only mode the body tree
must be manually defined (or previously evolved). When using
full evolution, it is possible to either “seed” evolution with an
existing morphology or create the initial population completely
at random. At each generation new body trees are created by
mutating clones of well-performing robots using one or more
of the mutation operators specified in Table I based on user-
configurable probabilities.

The body plan defines the inputs and output of the robot’s
brain, i.e. as sensor or motor body parts are added or removed
from the body tree, input and output neurons (respectively) are
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added or removed from the brain. Additionally, hidden neurons
may be added or removed based on configurable probabilities.
When a neuron is removed, all connections to/from that neuron
are also removed. When a neuron is inserted, zero-weight
outgoing connections are created to all sigmoid hidden and
output neurons. When a hidden or output neuron is inserted,
it is chosen to be either a sigmoid or oscillator neuron based
on a configurable probability. If it is a sigmoid neuron, zero-
weight incoming connections are created from all neurons.
In addition to these topological changes, the parameters of
a robot’s brain (connection weights, and neuron parameters)
are mutated by Gaussian perturbations based on user defined
probabilities and magnitudes.

Sexual reproduction (AKA crossover) is possible when
evolving ANNs with a fixed topology (e.g. doing brain-
only evolution with 0 probability of adding additional hidden
neurons), but otherwise is disabled for simplicity. When two
brains are crossed over, the vectors of weights and parameters
are concatenated into a single vector, single point crossover is
applied, and this crossed-over vector is used to create a new
brain representation prior to the application of the parametric
mutations.

At each generation the current µ parents compete in tour-
naments (of configurable size) to decide which parents get
to produce offspring. This process repeats until λ children
are produced. After the λ children have been evaluated in
the simulation engine the next set of µ parents are chosen
by choosing the most fit of either the current λ children
(“comma” selection) or the most fit out of the λ children and
previous µ parents (“plus” selection; terminology borrowed
from Evolution Strategies [5]), and this process repeats for
the user-specified number of generations.

In addition to the basic evolution mode just described,
RoboGen also supports evolving brains via a more sophis-
ticated EA, known as HyperNEAT [45]13, which indirectly
encodes the weights and parameters of the neural network
using an encoding inspired by developmental biology. The
details of HyperNEAT are beyond the scope of this paper, but
it has been shown to be successful in a number of evolutionary
robotics applications [1], [4], [10].

2) Simulation Engine: Every newly created robot represen-
tation (brain and body) is sent to the physics-based simulation
engine14 in order to evaluate its fitness (refer to Fig. 2). The
abstract representation is translated into a physical model of
the robot along with code for operating its brain, and this robot
is placed inside of a user-defined, simulated environment and
allowed to act. The robot’s fitness is computed either using
one of the built-in fitness functions, or the user may write a
custom fitness function in JavaScript.

By default the environment is an infinite flat plane with
Earth normal gravity. However, this can be modified in a
number of ways, the most important of which is through the
inclusion of obstacles. By defining a set of obstacles and light
sources (either stationary or movable) that the robot can inter-

13Specifically, an adaptation of Peter Chervenski’s MultiNEAT is used:
http://www.multineat.com/

14The simulation engine is built on top of the Open Dynamics Engine:
http://www.ode.org/

Mutation Operator Description
NodeInsert Insert a random node at a random location in the

body representation tree.
NodeRemove Remove a random node from the body tree rep-

resentation.
SubtreeDuplicate Duplicate a randomly chosen subtree and insert

it at a random location on the body tree.
SubtreeSwap Swap two randomly chosen subtrees of the body

tree representation.
SubtreeRemove Remove a randomly chosen subtree from the

body tree representation. Unlike NodeRemove
which attempts to remove a node and propagate
its children upwards, SubtreeRemove removes a
node and all of its descendants.

MutateParam Mutate a randomly chosen parameter of a ran-
domly chosen node. For the purpose of this
operator a node’s orientation relative to its parent
is also consider to be a parameter.

TABLE I
THE AVAILABLE BODY-TREE MUTATION OPERATORS. THE PROBABILITY

OF APPLYING EACH OPERATOR IS USER-CONFIGURABLE.

act with, it is possible to create more complex environments
such as rough terrains, mazes, stairs, goal locations etc.

3) Interface and Distributed Computation: The RoboGen
platform is written in C++. This C++ code has been “tran-
spiled” to JavaScript using Emscripten15. Consequently, it is
possible to run RoboGen entirely in a web browser, which
is inherently cross-platform and does not require installing
any additional software. Running in the web browser also
means that it is possible to leverage modern web design
tools in order to build an interface that is more accessible to
novice users than the command line. The current web-based
interface replaces command line executions with a web form
for launching experiments, and a tabular status display for
monitoring results and quickly viewing the best robot at every
generation.

RoboGen software can either run on a single personal com-
puter or make use of the Seamless Peer and Cloud Evolution
(SPACE) Framework [27] for seamlessly distributing fitness
evaluations to simulation engines running both in the web
browsers of other users as well as optimized versions running
on cloud compute nodes. With this framework, users are
able to choose to run experiments on their own computers,
share compute resources publicly, or create a private pool of
computers to share among a particular group.

Each step in the process of using RoboGen is fully docu-
mented on http://www.robogen.org. This documentation cov-
ers both a desktop (C++) version and a web application.
The full setup and use of the software is described along
with examples and in depth descriptions of all parameters.
Moreover, complete details of building the physical robots are
provided: several options for obtaining the parts (printing them
oneself and purchasing from a 3rd party service16) as well
as details of how to assemble and connect the sensors and
actuators, and finally how to upload the evolved “brain” to
the microcontroller.

15https://github.com/kripken/emscripten
16http://www.shapeways.com
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In addition, to make the fabrication process easier to follow,
7 short tutorial videos17 are embedded in the RoboGen doc-
umentation pages. These feature step by step instructions for
the most important steps of building a robot. They are shot in
a first person view and include zoomed in shots for showing
intricate details.

C. Using RoboGen for a master’s level course

RoboGen has been used for project based learning within a
master’s level course (Micro-515, Artificial Evolution) at the
Ecole Polytechnique Fédérale de Lausanne (EPFL). Students
are first exposed to RoboGen through a series of exercise
sessions, and then they are given free reign to evolve robot
bodies and brains for a chosen scenario, which they will
ultimately fabricate.

The exercise sessions aim to familiarize the students with
the relevant concepts of Evolutionary Robotics (e.g. fitness
functions and the parameters of the evolutionary algorithm)
that they have already seen in lectures. At the same time they
are learning to use the RoboGen platform. Before beginning
these sessions, it is explained to the students that they will be
using the RoboGen platform for their course projects, and so,
as they work through the exercises, they can begin to think
about what kinds of scenarios they would like to work on
for their projects, and how they might implement them. Each
of the exercises is structured as step-by-step instructions fol-
lowed by checkpoint questions, which challenge the students’
understanding of what they are doing. The answers to these
questions are later made available so that the students can
verify their responses. The details of these exercises may be
found on http://robogen.org

After gaining a base understanding of RoboGen through
this hands on experience, the students form project groups and
begin working on their projects: writing fitness functions and
performing experiments. Following the philosophy of IBL, the
students are given lots of leeway in conducting experiments
as they see fit, however they are encouraged to use proper
research techniques and to conduct multiple repetitions of
experiments in order to perform statistical analyses.

Many issues tend to arise when the students move from the
guided exercises to their own, often lofty, project ambitions.
For instance, the students quickly realize that, on non-trivial
tasks, small population sizes and/or too strong of selection
pressure will quickly lead to premature convergence to local
optima. Another common lesson is that evolution frequently
finds solutions that score well on a given fitness function,
while not actually achieving the experimenter’s intent. These
are valuable lessons for students to learn, and following the
IBL philosophy the students are left to first learn them from
their own experience, and only later are they elaborated upon
by the instructors.

In parallel to their experiments, the students are encouraged
to begin building their robots, along with their test environ-
ments or arenas, as soon as possible. This allows them to
see the real robot behavior and potential discrepancies that
might arise, in order to address them in ongoing evolutionary

17https://www.youtube.com/channel/UCaCe181uC3GIZxWrxOECxIA

Fig. 6. Team Stabilize’s robot evolved for delivering drinks.

experiments. Because the robot can be fully disassembled and
reassembled, they can test intermediate solutions or different
evolved morphologies in order to refine their results. This
hardware work is an important part of their research process.

The students are given an initial set of electronic parts in-
cluding a microcontroller, two batteries, a power regulator, six
servomotors, eight FixedBricks, and six ActiveHinge frames to
get them started. They are then responsible for 3D printing
any additional parts they need to build their robots18, and can
obtain sensors on request. While each group is responsible
for their own materials and building their own robot, they are
encouraged to share their skills and extra materials with others
in a spirit of collaboration.

At the conclusion of the project the students have to prepare
two deliverables for their final evaluation. The first is a written
report, in the style of an IEEE conference publication, describ-
ing their project in detail. The second is a final presentation
delivered in front of their peers and the instructors. For these
presentations the students are allotted a hard time limit of
eight minutes followed by three minutes of Q&A. The final
report and presentation should demonstrate that the students
understand the main principles of Evolutionary Robotics,
including evolution of robot brains and bodies, and that they
are able to apply these principles to interesting scenarios. The
students are informed that their evaluations will be based on:
(a) the quality and clarity of their report and presentation,
(b) the strength of their results, (c) the use of systematic and
scientific methodologies, (d) the complexity and feasibility
of the scenario(s) investigated, and (e) their ability to work
through difficulties.

IV. RESULTS AND DISCUSSION

Here, the results of using RoboGen during the Spring
semester of 2016 are briefly presented. First, we use a few
example projects to showcase what the students were able
to accomplish, discuss common lessons that they learned,
and describe some of the self-directed learning experiences
they underwent. After this, we present a sampling of the
feedback that the students provided in response to a post-
course questionnaire.

A. Student Project Examples
Due to the open-endedness of the projects, and the freedom

that students were allotted to design their own scenarios, the

18A dedicated 3D printer is made available to them for this purpose.
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Fig. 7. A robot evolved by Team Jump, mid jump.

students’ projects produced a diversity of scenarios and robotic
forms. We have chosen three example student projects to
highlight this diversity, to shine light on the difficult task of
writing fitness functions, and to highlight how the groups were
able to transfer their simulated results to real robots. We will
refer to these three groups as follows: Team Stabilize, Team
Jump, and Team Escape.

Fitness Function Design
Team Stabilize: this group originally wanted to evolve a

robot for delivering drinks. Since simulating the fluid dynam-
ics of actually carrying a drink would be beyond the scope
of RoboGen’s simulation engine, their idea was that the robot
should be able to move as fast as possible while maintaining
stability. Since these two objectives are antagonistic, the choice
of fitness function defines a given trade-off. Additionally, the
way in which the fitness function is designed might make
it nearly-impossible to move off of a local optimum in the
fitness landscape. As a result, the students incrementally tuned
their fitness function such that it gave enough importance to
both objectives at the same time19 in order to arrive at a good
solution (depicted in Fig. 6)20.

Team Jump: this group chose to evolve a robot capable of
jumping onto an object. Once again devising an appropriate
fitness function formed a sizable challenge. After careful
experimentation they ended up using an incremental evolu-
tion [18] approach to subdivide this goal into three sub-goals
to be fulfilled in succession: (1) jump as high as possible in
place, (2) jump with lateral displacement, and (3) identify a
target object and jump onto it.

Rewarding vertical jumps could be done with a straight-
forward function on the minimum z (vertical) coordinate of
the robot’s axis aligned bounding box. This resulted in a
snake-like morphology (Fig. 7) whose motion consisted of a
folding phase where it curved on itself, followed by a forceful,
coordinated movement of all servos to propel itself into the air
and curve the opposite way, resulting in a propulsive motion
similar to that of a jumping worm or caterpillar.

19A more general solution would be to use a multi-objective Evolutionary
Algorithm [11], and the students do learn about such algorithms in the
course. However, this functionality is not currently part of RoboGen, and
implementing it is beyond the scope of these projects.

20See also https://youtu.be/8g7POPzZ6n8 for a video of the real robot in
action

Fig. 8. The function that the students in Team Jump devised for detecting
when a robot has jumped and landed on an obstacle. The red line depicts the
current height threshold to be considered airborne, the blue line represents
the current lowest point of the robot’s axis aligned bounding box (AABB),
and the jumping periods are highlighted in green.

Rewarding lateral displacement was slightly more difficult,
as the students needed a way to only reward lateral movements
that occurred during a jump, and not other lateral movements
that could be achieved without jumping. Eventually this group
settled on using a threshold of the robot’s minimum z-
coordinate to consider the robot to be “airborne”. The fitness
function then would compute the horizontal displacement
achieved while the robot was in the air.

The final objective: jumping onto an obstacle, proved the
trickiest to select for. This could not simply rely on a robot’s
lowest point crossing below a threshold, since if it jumped
onto an object, its lowest point would never pass below
the threshold again, and hence the jump would never be
considered complete. Instead the students came up with the
idea of considering the jump to be completed when the robot’s
lowest point did not change within a certain time window.
When this happened, it could be inferred that the robot had
“landed”. Specifically, the group came up with the following
criteria: a jump was considered complete when a robot’s lowest
point did not change by more than 2mm within 80ms of
simulated time. At this point the height threshold for future
jumps was updated to be 2cm above the robot’s current resting
height (h). With this new method of computing jump distances,
the students could create a function that determined the status
of the robot at all times (airborne, on a step of height h, or on
the ground). This can be seen in Fig. 8. These modifications
allowed them to use the same fitness metric as in previous
steps: the maximum performance of all jumps performed
during a trial, and therefore select for their ultimate goal: a
robot capable of jumping a large distance onto an object.

Following this procedure, the students were able to evolve a
robot that could jump an impressive 19 cm vertically, or about
540% of the height of the robot. In addition, it was capable
of jumping with a lateral motion, onto a platform, balancing
itself, and jumping back down.

Team Escape: this group’s goal was to evolve a robot
capable of escaping from a restricted environment. The robot
initially was able to move in an open environment and then
the environment was gradually restricted over evolutionary
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Fig. 9. The progression of environments devised by Team Escape in order
to evolve “escapist” robots. See text for details

time. By modifying the task environment in this fashion they
were able to gradually increase the complexity of the robot’s
behavior without modifying the way in which fitness was
computed.

The robot was forced to evolve to free itself from its “cage”
and approach an attractor. In order to encourage generalist
solutions, the scenario involved evaluating each robot from
several different starting orientations inside of the “cage”.
The progression of environments can be seen in Fig. 9. The
first restriction was to build three walls surrounding the robot
(b). The distance between the walls was chosen as 119% of
the robot body’s maximum dimension, to be as restrictive
as possible, while allowing the robot to move. The second
restriction was a 1cm high bar against the ground across the
opening wall (c). This edge added a constraint that the robot
had to lift its “feet” over this bar to make it outside. Finally,
as an additional challenge, the students decided to see if the
robot could make it out of its cage if the opening was smaller
that its body. They closed the opening halfway leaving only a
23cm opening (d). The robot evolved to rotate its body until
one “leg” was outside the cage, then folded itself around the
wall and inched the second leg out.

In all three of these cases the students pursued complex
behaviors and were forced to incrementally modify the way
in which fitness was calculated and/or modify the task environ-
ments in which the robot was evaluated in. The students thus
learned on their own to utilize techniques commonly employed
in the Evolutionary Robotics literature such as incremental
evolution [18], scaffolding [6], and shaping [2]

From Simulation to Reality
Team Escape carefully reproduced their simulated arena

in reality. Then, from observing the movement of their robot
in this real world arena, the students noticed that the friction
between the robot’s “feet” and the floor and walls had a large
influence on its behavior. They thus proceeded to study the
effect this would have on the performance of the robot. Run-
ning several additional evolutionary experiments with higher
friction, they found that the fitness of their escapist robot was
improved for a higher friction coefficient. They then validated
this on the physical robot, by adding some tape to the robot’s
feet21.

While Team Stabilize did not require an arena beyond
a flat surface, they too needed to experiment with different
ground surfaces to match the friction seen in the simulator.
Then, on personal initiative, they went beyond the project
requirements and performed an additional study: they installed
a data logger on their physical robot to quantitatively evaluate
its stability, which was then used to compare the simulated and
real fitnesses, as well as to consider sources of discrepancy. In
fact, the real robot gave varying fitnesses over several trials, all
lower than the simulated fitness by an average of 25%. They
cited three possible reasons for this: differences in the friction
between the robot and the ground, noise in the servomotors’
movement, and slight discrepancies in the geometry—either
in the joints’ range of movements or imperfections in the
assembly of the robot.

Finally, due to the forceful ground impacts created by
Team Jump’s robot, several servo gearboxes were broken.
To prevent this from happening, they started testing their real
robot on a thin sheet of styrofoam. The styrofoam acted as a
cushion to protect the servos, and even though it was thin, it
still absorbed some of the energy, thus decreasing the height
of the jump: in the real world, the robot could only jump up
to 5 cm22. While not as impressive as their simulation results,
this was still a non-trivial accomplishment.

Each of these groups highlights the success of the RoboGen
projects. Team Stabilize’s work highlights not only the suc-
cessful evolution of a robot for a non-trivial task, but also the
self-driven question and answering that comes out of these
projects, and how students may leverage skills and techniques
not directly taught in the course to carry their projects further.
Team Jump’s work also highlights the interesting ways that
students went beyond the scope of the project. It showcases
the students’ willingness to build interesting physical arenas,
and iteratively study a property of the system (in this case
friction) that is made possible by the many configuration
options available in RoboGen.

In summary, all three groups’ careful engineering of appro-
priate fitness functions for complex behaviors, construction
of test environments, and thoughtful consideration of dis-
crepancies between simulation and reality were all important

21A video demonstrating this robot is available online at https://youtu.be/
efz-mvpJDqI

22A video of the real robot is available online at https://youtu.be/Q0oBu
yQtJo
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learning experiences that uniquely resulted from the open-
ended, hands-on nature of evolving robots with RoboGen.
While many other students groups also tackled a diversity
of interesting scenarios, these three are the only ones we
will discuss here due to space constraints. They highlight
the diversity of tasks achieved, the interesting ways in which
students learned from discrepancies between simulation and
reality, and how the openness of the projects allowed the
students to leverage their own knowledge and expertise to go
beyond what was required of them.

B. Course Evaluation Results

At the end of the project, a questionnaire was given to the
students in order to obtain as much feedback as possible about
the course and the project. The complete results can be seen at
http://robogen.org/research/questionnaire results.html, and the
most important points will be discussed here.

The questionnaire was complete by 27 out of 42 students,
which is about 64% of the class. The students who responded
came from six different majors: Microengineering (63%),
Computer Science (14.8%), Electrical Engineering (7.4%),
Bioengineering (7.4%), and one student apiece from Life
Sciences and Mechanical Engineering. Most of these students
(77.8%) stated that they were in the 2nd semester of their
master’s degree.

The first questions of the questionnaire required the students
to evaluate their knowledge on each of the learning outcomes
of the course that were covered in the project23. Then, the
logistics of the project were examined24. These questions were
formulated as statements and the student responded on a Likert
scale from 1 (disagree) to 5 (agree) [29]. Finally, the students
were presented with several questions where they were able to
offer their own free-form responses. The results offer helpful
insights into the students’ understanding and perception of the
RoboGen platform, its documentation, and the structure of the
project.

The questions relating to the learning outcomes suggested
that the students gained many important skills, such as how
to simulate robots, how to evolve brains and bodies, how
to fabricate robots, and how to control a robot with an
Arduino microprocessor (see Table II). This lends support
to the effectiveness of the projects as valuable learning ex-
periences. However, the students’ understanding of neural
networks lagged behind the other skills (as evidenced by the
last two rows in Table II), and is something that needs to be
addressed in future iterations of the course.

Overall, the students evaluated the project positively, with
many questions relating to the overall project content and
organization receiving mean responses above 4 (refer to
http://robogen.org/research/questionnaire results.html). Addi-
tionally, many of the students enjoyed and felt they benefited
from the project as evidenced by their free-form comments:

• Simply the best [project] I’ve done at the EPFL !
• Finally a project during the Robotic cursus [sic] where

we have to build a robot!

23Questions under Learning outcomes
24Questions under RoboGen Project Evaluation

Statement Mean Response +/- σ

I know how to use the RoboGen software to
simulate a robot.

4.78 +/- 0.42

I know how to use the RoboGen software to
simultaneously evolve the brain and body of a
robot

4.70 +/- 0.46

I can design my own robot morphology in
RoboGen by defining its tree structure.

4.78 +/- 0.42

I understand the benefits and drawbacks of in-
cluding noise in my simulations.

4.74 +/- 0.44

I understand the benefits and drawbacks of per-
forming multiple simulations (trials) per fitness
evaluation.

4.92 +/- 0.26

I can build a robot that I evolve. 4.74 +/- 0.58
I can run my evolved neural controller on the
Arduino microcontroller of the robot I have
built.

4.59 +/- 0.68

I understand how the artificial neural network
controllers (brains) of RoboGen robots are rep-
resented.

3.44 +/- 1.17

I understand how the brains of RoboGen robots
operate.

3.56 +/- 1.26

TABLE II
A SAMPLING OF QUESTIONS AND AVERAGE RESPONSES (LIKERT SCALE,

OUT OF 5) RELATING TO THE STUDENT’S POST-PROJECT UNDERSTANDING
OF ROBOGEN AND EVOLUTIONARY ROBOTICS.

• It simulates a whole research process: from parameters
selection, to simulation and finally to the real implemen-
tation.

• Think, design, built and run.. From zero to hero!
• It was quite great, I enjoyed a lot while learning the

subjects and relating my knowledge with real life usage.

V. CONCLUSIONS AND FUTURE WORKS

In the spirit of Inquiry-Based learning, the goal of the
RoboGen project is for students to learn the course material
through a research-based method. Once they have been pro-
vided the basic level of competency to proceed, the students
design their own methodology for better understanding the
mechanisms of evolutionary algorithms, and then must report
in detail on their experimental method and results. The results
presented above support the idea that RoboGen is an effec-
tive platform for this purpose both through sample student
experiences and through student responses to a post-project
questionnaire.

The post-project questionnaire is also of crucial impor-
tance for improving RoboGen in the future. For instance,
the relatively poor understanding of neural networks could
be addressed by extending RoboGen with a mechanism to
visualize the neural networks and the way in which they
are evolved. There are also several additional places that the
platform and project structure could be improved for future
students. In fact, the final question presented to the students on
the questionnaire was: “What do you think could be improved
in the project?” These responses are crucially important for
planning the future work on RoboGen.

One frequent comment was about the RoboGen web in-
terface. Since this crop of students served as beta-testers for
the new interface, this was to be expected, and their extensive
feedback is being taken into account in ongoing improvements.
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Another important point was raised by one of the students:
“It would have been good to have much more examples and re-
sults [sic] of evolved robots. It was difficult to define a project
without knowing the limitations of Robogen in advance.” This
is a point well taken, as it might be difficult for students
to fully grasp what projects are feasible with the platform.
While the students discussed their scenarios with the teaching
assistants prior to beginning their experiments, this relies on
the TAs’ prior experience and runs counter to the open-ended,
self-guided inquiry that is a driving principle behind these
projects. Now that the platform has reached a level of maturity
and several groups of students have completed it, it will be
possible in the future to present new students with a multitude
of previous results. However, in doing so, one must be careful
so as not to bias the students too much into only investigating
scenarios that are close to those used previously. Rather, seeing
old results should give the students a good starting point for
understanding what RoboGen can be used for, and hopefully
they will be able to use this inspiration to create a diversity
of novel scenarios on their own.

In order to address requests for greater functionality, ad-
ditional future improvements will aim at incorporating more
sophisticated techniques from the Evolutionary Robotics lit-
erature to help evolve robots for more complex tasks. More-
over, further work will go into designing new body parts to
expand the diversity of morphologies. In particular, it will be
interesting to incorporate additional sensors as well as body
parts offering more compliance—including the use of soft and
flexible materials. However, there is currently a limit to the
types of softness that can be efficiently simulated using current
technologies.

Finally, it is worth noting that while RoboGen has been
employed in these projects for evolving robot bodies and
brains, the platform may have broader appeal among educators
seeking to teach robotics and/or AI, but not necessarily Evo-
lutionary Robotics. By designing robot bodies manually and
programming their control strategies, it is possible to rapidly
test ideas inside of RoboGen’s web-based simulation engine,
and then build these robots cheaply and easily. Fabricating
these robots would still offer valuable learning opportunities
in 3D printing, electro-mechanical assembly, and embedded
processing. Furthermore, due to RoboGen being fully open-
source, it could be extended to develop interesting student
projects around such topics as designing additional compo-
nents (requiring knowledge of both mechanical design and
physical simulation), and searching for controllers through
alternative methods, such as Reinforcement Learning [47].

In this paper, we have presented RoboGen: an open-source,
web-based, software and hardware platform for Bio-Inspired
Artificial Intelligence and Evolutionary Robotics. We first sur-
veyed the state of the art in educational robotics platforms to
show that RoboGen is unique in offering open source software
and hardware that allows students to design and evolve robot
bodies and brains in simulation, and then fabricate these bio-
inspired, articulated robots at low cost using 3D printers and
off-the-shelf electronic components. We then described the
platform in detail, and presented its use as a tool for project
based learning within the confines of a master’s level course at

EPFL. The diversity of students’ results, their enthusiasm for
the project, and their mastery of the majority of the learning
objectives all lend credence to RoboGen being an effective
educational tool.

Now that RoboGen exists as a web-application, which can
be used by anyone in the world with a modern web browser,
it will be relatively easy for other educators to begin using
RoboGen in their own classes and for individual interested
students to use the software on their own. In fact, RoboGen
is currently being adopted by other universities worldwide
including Heriot Watt University in the United Kingdom and
VU Amsterdam in the Netherlands for use with their own
students. Ongoing improvements to the web interface and
other enhancements will hopefully speed up this adoption,
and having extensive student feedback offers an invaluable
resource for this undertaking.
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[35] F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz,
S. Magnenat, J.-C. Zufferey, D. Floreano, and A. Martinoli. The e-puck,
a robot designed for education in engineering. In Proceedings of the 9th
conference on autonomous robot systems and competitions, volume 1,
pages 59–65. IPCB: Instituto Politécnico de Castelo Branco, 2009.
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